Applied sciences (Basel, Switzerland) | 2019

New Insights in Potato Leaf Freezing by Infrared Thermography

 
 
 

Abstract


Infrared thermography has been widely used to study freezing processes in freezing resistant plants but hardly in freezing susceptible species. Solanum tuberosum leaves get frost killed at −3 °C and are unable to frost harden. The basic nature of frost injury to potato leaves is not clear. By employment of infrared differential thermal analysis (IDTA) in combination with viability assessment, we aimed to clarify the mechanistic relationship between ice formation and frost injury. During controlled freezing of potato leaves two distinct freezing events were detected by IDTA. During the first freezing event, the ice wave propagated via the xylem and spread out within 60 s throughout the whole leaf. When leaves were rewarmed after this freezing event, they did not show any frost injury symptoms. We suggest that this non-lethal first ice wave is restricted to the extracellular space. When leaves remained exposed after this exotherm, a second freezing event with a diffuse freezing pattern without a distinct starting point was recorded. When thawed after this second freezing event, leaves always showed frost damage suggesting intracellular freezing. The freezing behavior of potato leaves and its relation to frost damage corroborates that control of ice nucleation is a key for frost protection.

Volume 9
Pages None
DOI 10.3390/app9050819
Language English
Journal Applied sciences (Basel, Switzerland)

Full Text