Biology | 2021

Adhesion and Stiffness of Detached Breast Cancer Cells In Vitro: Co-Treatment with Metformin and 2-Deoxy-d-glucose Induces Changes Related to Increased Metastatic Potential

 
 
 
 

Abstract


Simple Summary The process of metastasis is one of the most destructive characteristics of cancer, yet it is still poorly understood. Formation of metastasis comprises several distinct steps: cancer cells first detach from the primary tumor and then enter the bloodstream where they circulate freely in the body and eventually adhere to vessel walls in distant organs where they can form secondary tumors. A recent study discovered that a co-treatment of two common drugs that interfere with cellular metabolism, metformin and 2-deoxy-D-glucose, induced cellular changes resembling those observed in metastasis: the drugs induced detachment of certain breast cancer cells and their proliferation in the floating state. In this study, we investigated if this treatment also induces other changes that are related to metastasis, i.e., if the detached cells are softer and if they are more prone to adhesion than control cells. The results of our in vitro experiments showed that this was indeed the case and thus indicate possible relations between metabolism and metastatic potential. While the results of this study cannot be directly projected to cancers in vivo, they present new observations that can be important for the analysis of cancer cell detachment and anchorage-independent growth. Abstract Metastatic cancer cells can overcome detachment-induced cell death and can proliferate in anchorage-independent conditions. A recent study revealed that a co-treatment with two drugs that interfere with cell metabolism, metformin and 2-deoxy-D-glucose, promotes detachment of viable MDA-MB-231 breast cancer cells. In the present study, we analyzed if these detached viable MDA-MB-231 cells also exhibit other features related to cancer metastatic potential, i.e., if they are softer and more prone to adhere to epithelial cells. The cell mechanics of attached cells and floating cells were analyzed by optical tweezers and cell deformability cytometry, respectively. The adhesion was assessed on a confluent monolayer of HUVEC cells, with MDA-MB-231 cells either in static conditions or in a microfluidic flow. Additionally, to test if adhesion was affected by the state of the epithelial glycocalyx, HUVEC cells were treated with neuraminidase and tunicamycin. It was found that the treated MDA-MB-231 cells were more prone to adhere to HUVEC cells and that they were softer than the control, both in the floating state and after re-seeding to a substrate. The changes in the HUVEC glycocalyx, however, did not increase the adhesion potential of MDA-MB-231.

Volume 10
Pages None
DOI 10.3390/biology10090873
Language English
Journal Biology

Full Text