Cancers | 2021

Synergistic Drug Combinations Prevent Resistance in ALK+ Anaplastic Large Cell Lymphoma

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Abstract


Simple Summary Despite success of targeted therapy, cancer cells very often find a way to survive treatment; this eventually causes a tumor to relapse. In a particular type of lymphoma carrying a specific chromosomal rearrangement named anaplastic large-cell lymphoma (ALCL), selective drugs targeting the cause of the disease can induce spectacular remission of chemotherapy-resistant cancer. However, the lymphoma relapses again in about half of the cases, leaving no therapeutic options. We studied the possibility to combine two simultaneous treatments in order to prevent the relapse, starting from the hypothesis that acquiring resistance to two drugs at the same time is statistically very unlikely. We demonstrate that treating lymphoma cells with drug combinations has superior efficacy in comparison with single drug treatments, both in cell cultures and in mice. Abstract Anaplastic lymphoma kinase-positive (ALK+) anaplastic large-cell lymphoma (ALCL) is a subtype of non-Hodgkin lymphoma characterized by expression of the oncogenic NPM/ALK fusion protein. When resistant or relapsed to front-line chemotherapy, ALK+ ALCL prognosis is very poor. In these patients, the ALK inhibitor crizotinib achieves high response rates, however 30–40% of them develop further resistance to crizotinib monotherapy, indicating that new therapeutic approaches are needed in this population. We here investigated the efficacy of upfront rational drug combinations to prevent the rise of resistant ALCL, in vitro and in vivo. Different combinations of crizotinib with CHOP chemotherapy, decitabine and trametinib, or with second-generation ALK inhibitors, were investigated. We found that in most cases combined treatments completely suppressed the emergence of resistant cells and were more effective than single drugs in the long-term control of lymphoma cells expansion, by inducing deeper inhibition of oncogenic signaling and higher rates of apoptosis. Combinations showed strong synergism in different ALK-dependent cell lines and better tumor growth inhibition in mice. We propose that drug combinations that include an ALK inhibitor should be considered for first-line treatments in ALK+ ALCL.

Volume 13
Pages None
DOI 10.3390/cancers13174422
Language English
Journal Cancers

Full Text