Archive | 2019

Effect of Noncovalent Dispersion of Poly(Ethylene Oxide) in Columnar Polyether-Based Discotic Liquid Crystal on the Ionic Conductivity and Dynamics of Lithium Ions

 
 
 
 

Abstract


The ionic conductivity of an electrolyte is represented by a product of carrier density, charge (electric), and ionic mobility. The overall goal of this study was to provide an insight into the influence of lithium ion conductivity and dynamic when a continuous discotic liquid crystal (DLC) matrix of hexaazatrinapthylene-polyether, HATN-TEG-1, is doped with a small amount of polyethylene oxide (PEO, 5% of MW 8000). The favorable non-covalent interactions between PEO and the DLC triethylene glycol side-chains is supported by the maintenance of the mesophase. The lithium ionic conductivity of HATN-TEG-1 was found to be 1.1 × 10−6 S cm−1, which is better than the corresponding HATN-TEG-1-5%PEO-8000 with a value of 6.06 × 10−7 S cm−1. These results are further supported by the dynamics of the lithium ions in HATN-TEG-1 and HATN-TEG-1-5%PEO-8000 as characterized by 7Li, and 1H NMR spin-lattice relaxation time and self-diffusion coefficient measurements. Though the additional PEO was found to increase the ion carriers, the significant lowering of the ionic conductivity may be attributed to the more pronounced decrease of the mobility of the ionic part when the HATN-TEG-1 matrix is dispersed with PEO. This finding indicates that the doping of 5% PEO onto the matrix of HATN-TEG-1 DLC has an adverse effect on both its diffusion rate and ion conductivity.

Volume 9
Pages 627
DOI 10.3390/cryst9120627
Language English
Journal None

Full Text