Diagnostics | 2021

Contrast-Enhanced Black Blood MRI Sequence Is Superior to Conventional T1 Sequence in Automated Detection of Brain Metastases by Convolutional Neural Networks

 
 
 
 
 
 
 
 
 
 
 

Abstract


Background: in magnetic resonance imaging (MRI), automated detection of brain metastases with convolutional neural networks (CNN) represents an extraordinary challenge due to small lesions sometimes posing as brain vessels as well as other confounders. Literature reporting high false positive rates when using conventional contrast enhanced (CE) T1 sequences questions their usefulness in clinical routine. CE black blood (BB) sequences may overcome these limitations by suppressing contrast-enhanced structures, thus facilitating lesion detection. This study compared CNN performance in conventional CE T1 and BB sequences and tested for objective improvement of brain lesion detection. Methods: we included a subgroup of 127 consecutive patients, receiving both CE T1 and BB sequences, referred for MRI concerning metastatic spread to the brain. A pretrained CNN was retrained with a customized monolayer classifier using either T1 or BB scans of brain lesions. Results: CE T1 imaging-based training resulted in an internal validation accuracy of 85.5% vs. 92.3% in BB imaging (p < 0.01). In holdout validation analysis, T1 image-based prediction presented poor specificity and sensitivity with an AUC of 0.53 compared to 0.87 in BB-imaging-based prediction. Conclusions: detection of brain lesions with CNN, BB-MRI imaging represents a highly effective input type when compared to conventional CE T1-MRI imaging. Use of BB-MRI can overcome the current limitations for automated brain lesion detection and the objectively excellent performance of our CNN suggests routine usage of BB sequences for radiological analysis.

Volume 11
Pages None
DOI 10.3390/diagnostics11061016
Language English
Journal Diagnostics

Full Text