Entropy | 2019

Evaluating the Transient Energy Dissipation in a Centrifugal Impeller under Rotor-Stator Interaction

 
 
 

Abstract


In fluid machineries, the flow energy dissipates by transforming into internal energy which performs as the temperature changes. The flow-induced noise is another form that flow energy turns into. These energy dissipations are related to the local flow regime but this is not quantitatively clear. In turbomachineries, the flow regime becomes pulsating and much more complex due to rotor-stator interaction. To quantitatively understand the energy dissipations during rotor-stator interaction, the centrifugal air pump with a vaned diffuser is studied based on total energy modeling, turbulence modeling and acoustic analogy method. The numerical method is verified based on experimental data and applied to further simulation and analysis. The diffuser blade leading-edge site is under the influence of impeller trailing-edge wake. The diffuser channel flow is found periodically fluctuating with separations from the blade convex side. Stall vortex is found on the diffuser blade trailing-edge near outlet. High energy loss coefficient sites are found in the undesirable flow regions above. Flow-induced noise is also high in these sites except in the stall vortex. Frequency analyses show that the impeller blade frequency dominates in the diffuser channel flow except in the outlet stall vortexes. These stall vortices keep their own stall frequency which is about 1/5 impeller frequency with high energy loss coefficient but low noise level. Results comparatively prove the energy dissipation mechanism in the centrifugal air pump under rotor-stator interaction. Results also provide the quantitative basis for turbomachinery’s loss reduction design.

Volume 21
Pages None
DOI 10.3390/e21030271
Language English
Journal Entropy

Full Text