Entropy | 2019

Heterogeneous Nucleation in Solutions on Rough Solid Surfaces: Generalized Gibbs Approach

 
 
 

Abstract


Heterogeneous nucleation of new phase clusters on a rough solid surface is studied. The ambient phase is considered to be a regular supersaturated solution. In contrast to existing studies of the same problem, the possible difference between the state parameters of the critical cluster and the corresponding parameters of a newly formed macroscopic phase is accounted for. This account is performed within the framework of the generalized Gibbs approach. Surface imperfections are chosen in the form of cones. The model allows us to simplify the analysis but also to obtain the basic results concerning the defect influence on the nucleation process. It is shown that the catalytic activity factor for nucleation of the cone depends both on the cone angle and the supersaturation in the solution determining the state parameters of the critical clusters. Both factors considerably affect the work of critical cluster formation. In addition, they may even lead to a shift of the spinodal curve. In particular, in the case of good wettability (macroscopic contact angle is less than 90°) the presence of surface imperfections results in a significant shifting of the spinodal towards lower values of the supersaturation as compared with heterogeneous nucleation on a planar solid surface. With the decrease of the cone pore angle, the heterogeneous spinodal is located nearer to the binodal, and the metastability range is narrowed, increasing the range of states where the solution is thermodynamically unstable.

Volume 21
Pages None
DOI 10.3390/e21080782
Language English
Journal Entropy

Full Text