Physical Sciences Forum | 2021

Solar System Peculiar Motion from Mid Infra Red AGNs and Its Cosmological Implications

 

Abstract


According to the Cosmological Principle, the Universe should appear isotropic, without any preferred directions, to a comoving observer. However, a peculiar motion of the observer, or equivalently of the solar system, might introduce a dipole anisotropy in some of the observed properties of the Cosmos. The peculiar motion of the solar system, determined from the dipole anisotropy in the Cosmic Microwave Background Radiation (CMBR), gave a velocity 370 km/s along l = 264°, b = 48°. However, dipoles from number counts, sky brightness or redshift distributions in large samples of distant active galactic Nuclei (AGNs) have yielded values of the peculiar velocity many times larger than that from the CMBR, though in all cases the directions agreed with the CMBR dipole. Here we determine our peculiar motion from a sample of ~0.28 million AGNs, selected from the Mid Infra Red Active Galactic Nuclei (MIRAGN) sample comprising more than a million sources. We find a peculiar velocity more than four times the CMBR value, although the direction seems to be within ~2σ of the CMBR dipole. Since a real solar peculiar velocity should be the same whatever the data or the technique of observations may be, such discordant dipoles could imply that the explanation for the genesis of these dipoles, including that of the CMBR, might lie elsewhere. At the same time, a common direction for all these dipoles, determined from completely independent surveys by different groups, does indicate that these dipoles are not merely due to some systematics, and it might instead suggest a preferred direction in the Universe implying a genuine anisotropy, which would violate the Cosmological Principle, the core of modern cosmology.

Volume None
Pages None
DOI 10.3390/ecu2021-09270
Language English
Journal Physical Sciences Forum

Full Text