Energies | 2021

Towards Better Wind Resource Modeling in Complex Terrain: A k-Nearest Neighbors Approach

 
 
 
 
 
 

Abstract


Wind turbines are often placed in complex terrains, where benefits from orography-related speed up can be capitalized. However, accurately modeling the wind resource over the extended areas covered by a typical wind farm is still challenging over a flat terrain, and over a complex terrain, the challenge can be even be greater. Here, a novel approach for wind resource modeling is proposed, where a linearized flow model is combined with a machine learning approach based on the k-nearest neighbor (k-NN) method. Model predictors include combinations of distance, vertical shear exponent, a measure of the terrain complexity and speedup. The method was tested by performing cross-validations on a complex site using the measurements of five tall meteorological towers. All versions of the k-NN approach yield significant improvements over the predictions obtained using the linearized model alone; they also outperform the predictions of non-linear flow models. The new method improves the capabilities of current wind resource modeling approaches, and it is easily implemented.

Volume None
Pages None
DOI 10.3390/en14144364
Language English
Journal Energies

Full Text