Energies | 2021

Optimal Power Flow Solution of Wind-Integrated Power System Using Novel Metaheuristic Method

 
 
 
 
 

Abstract


Wind energy is particularly significant in the power system today since it is a cheap and clean power source. The unpredictability of wind speed leads to uncertainty in devolved power which increases the difficulty in wind energy system operation. This paper presents a stochastic optimal power flow (SCOPF) for obtaining the best scheduled power from wind farms while lowering total operational costs. A novel metaheuristics method called Aquila Optimizer (AO) is used to address the SCOPF problem due to its highly nonconvex and nonlinear nature. Wind speed is represented by the Weibull probability distribution function (PDF), which is used to anticipate the cost of wind-generated power from a wind farm based on scheduled power. Weibull parameters that provide the best match to wind data are estimated using the AO approach. The suggested wind generation cost model includes the opportunity costs of wind power underestimation and overestimation. Three IEEE systems (30, 57, and 118) are utilized to solve optimal power flow (OPF) using the AO method to prove the accuracy of this method, and results are compared with other metaheuristic methods. With six scenarios for the penalty and reverse cost coefficients, SCOPF is applied to a modified IEEE-30 bus system with two wind farms to obtain the optimal scheduled power from the two wind farms which reduces total operation cost.

Volume None
Pages None
DOI 10.3390/en14196117
Language English
Journal Energies

Full Text