Forests | 2019

Leaf Abundance Affects Tree Height Estimation Derived from UAV Images

 
 
 

Abstract


Tree height is an important vegetative structural parameter, and its accurate estimation is of significant ecological and commercial value. We collected UAV images of six tree species distributed throughout a subtropical campus during three periods from March to late May, during which some deciduous trees shed all of their leaves and then regrew, while other evergreen trees kept some of their leaves. The UAV imagery was processed by computer vision and photogrammetric software to generate a three-dimensional dense point cloud. Individual tree height information extracted from the dense photogrammetric point cloud was validated against the manually measured reference data. We found that the number of leaves in the canopy affected tree height estimation, especially for deciduous trees. During leaf-off conditions or the early season, when leaves were absent or sparse, it was difficult to reconstruct the 3D canopy structure fully from the UAV images, thus resulting in the underestimation of tree height; the accuracy improved considerably when there were more leaves. For Terminalia mantaly and Ficus virens, the root mean square errors (RMSEs) of tree height estimation reduced from 2.894 and 1.433 m (leaf-off) to 0.729 and 0.597 m (leaf-on), respectively. We provide direct evidence that leaf-on conditions have a positive effect on tree height measurements derived from UAV photogrammetric point clouds. This finding has important implications for forest monitoring, management, and change detection analysis.

Volume 10
Pages 931
DOI 10.3390/f10100931
Language English
Journal Forests

Full Text