Forests | 2021

Cold Acclimation Increases Freeze Tolerance in Acacia koa, a Tropical Tree Species Occurring over a Wide Elevational Gradient

 
 
 

Abstract


Frost damage is among the major limitations to reforestation and forest restoration projects worldwide. Investigations of environmental and genetic effects on frost resistance have focused on boreal and temperate tree species rather than tropical trees. Koa (Acacia koa A. Gray) is a valuable tropical hardwood tree species endemic to the Hawaiian Islands, USA. Koa occurs across a wide elevational gradient, and newly planted trees are subject to winter frost at high elevations. We sought to determine whether different koa populations show variation in freeze hardiness as a cold-tolerance mechanism, and whether exposure to hardening conditions prior to frost exposure can modify koa cold-tolerance adaptation. Seeds from 13 populations of koa (Acacia koa A. Gray) were collected across an elevational range (603–2050 m) on the Island of Hawai’i. Four-month-old seedlings grown from the 13 population seed sources were divided into control (non-acclimated) and cold-acclimated treatments, maintained at 26 °C/22 °C (day/night) or exposed to gradually decreasing temperatures to 8 °C/4 °C (day/night), respectively. After six weeks, control and cold-acclimated seedlings from each population were tested for freeze tolerance by electrolyte leakage at five test temperatures ranging from 5 °C (control) to −20 °C. Treatment effects were mainly observed at the lowest test temperatures (−15 and −20 °C). A higher index of cold damage occurred in the non-acclimated seedlings for most of the populations. Several of our higher elevation populations showed greater cold tolerance than populations from lower elevations, particularly when cold-acclimated. Our results suggest that cold acclimation may increase frost hardiness in a tropical forest tree species, and that there is likely some adaptive variation in frost tolerance among populations from different elevations. Cold acclimation could be a useful tool to prepare koa seedlings to be planted in high-elevation sites prone to freezing winter temperatures.

Volume None
Pages None
DOI 10.3390/f12081089
Language English
Journal Forests

Full Text