Forests | 2021

Determining an Accurate and Cost-Effective Individual Height-Diameter Model for Mongolian Pine on Sandy Land

 
 
 
 
 
 

Abstract


Height-diameter (H-D) models are important tools for forest management practice. Sandy Mongolian pine plantations (Pinus sylvestris var. mongolica) are a major component of the Three-North Afforestation Shelterbelt in Northern China. However, few H-D models are available for Mongolian pine plantations. In this paper we compared different equations found in the literature for predicting tree height, using diameter at breast height and additional stand-level predictor variables. We tested if the additional stand-level predictor variable is necessary to produce more accurate results. The dominant height was used as a stand-level predictor variable to describe the variation of the H-D relationship among plots. We found that the basic mixed-effects H-D model provided a similar predictive accuracy as the generalized mixed-effects H-D model. Moreover, it had the advantage of reducing the sampling effort. The basic mixed-effects H-D model calibration, in which the heights of the two thickest trees in the plot were included to calibrate the random effects, resulted in accurate and reliable individual tree height estimations. Thus, the basic mixed-effects H-D model with the above-described calibration design can be an accurate and cost-effective solution for estimating the heights of Mongolian pine trees in northern China.

Volume None
Pages None
DOI 10.3390/f12091144
Language English
Journal Forests

Full Text