Fermentation | 2019

Anhydrobiosis in Yeasts: Changes in Mitochondrial Membranes Improve the Resistance of Saccharomyces cerevisiae Cells to Dehydration–Rehydration

 
 

Abstract


Anhydrobiosis is a unique state of live organisms in which their metabolism is temporary reversibly suspended as the result of strong dehydration of their cells. This state is widely used currently during large-capacity production of active dry baker’s yeast. Other strains of the yeast Saccharomyces cerevisiae, as well as other yeast species that could potentially find use in modern biotechnology, are not resistant to dehydration–rehydration treatments. To improve their resistance, the main factors that influence cell survival during such treatment need to be revealed. This study showed the importance of mitochondria for yeast cell survival during transfer into anhydrobiosis, a factor that was strongly underestimated until this study. It was revealed that the external introduction inside yeast cells of 50 μM of lithocholic acid (LCA), an agent that induces changes in glycerophospholipids in mitochondrial membranes, in combination with 1% DMSO, may improve the survival rate of dehydrated cells. The influence of LCA upon yeast cell resistance to dehydration–rehydration was not linked with changes in the state of the cells’ plasma membrane.

Volume 5
Pages 82
DOI 10.3390/fermentation5030082
Language English
Journal Fermentation

Full Text