Genes | 2019

Novel Polymorphisms in RAPGEF6 Gene Associated with Egg-Laying Rate in Chinese Jing Hong Chicken using Genome-Wide SNP Scan

 
 
 
 
 
 
 
 
 

Abstract


The improvement of egg production is of vital importance in the chicken industry to maintain optimum output throughout the laying period. Because of the elongation of the egg-laying cycle, a drop in egg-laying rates in the late laying period has provoked great concern in the poultry industry. In this study, we calculated the egg-laying rate at weeks 61–69 (60 days) of Jing Hong chickens parent generation as the phenotype, and the genotype were detected by the chicken 600K Affymetrix Axiom High Density (HD) Single Nucleotide Polymorphisms (SNP)-array. The Genome-Wide Association Study (GWAS) result showed that the egg production trait is significantly associated with five SNPs (AX-75745366, AX-75745380, AX-75745340, AX-75745388, and AX-75745341), which are in the rap guanine nucleotide exchange factor 6 (RAPGEF6) gene on chicken chromosome 13. A total of 1676 Chinese commercial Jing Hong laying hens—including two populations, P1 population (858 hens) and P2 population (818 hens)—were genotyped using the Polymerase Chain Reaction-Restriction Fragments Length Polymorphisms (PCR-RFLP) method for the association analysis of egg-laying rates for the verification of the GWAS results. Genotypic and allelic frequencies of five SNPs were inconsistent with Hardy–Weinberg equilibrium, and the average population genetics parameters considering all the SNP values; i.e., gene homozygosity (Ho), gene heterozygosity (He), the effective number of alleles (Ne), and the polymorphism information content (PIC) were 0.75, 0.25, 1.40, and 0.20 in P1; 0.71, 0.29, 1.46, and 0.24 in P2; and 0.73, 0.27, 1.43, and 0.22 in P1 + P2 populations, respectively. The association analysis results revealed that out of the five polymorphisms, three of them (AX-75745366, AX-75745340, and AX-75745341; Patent applying No: 201810428916.5) had highly significant effects on egg-laying rates according to the GWAS results. Population-specific association analyses also showed similar significant association effects with this trait. Four haplotypes (AAGG, AAAG, AGGG, and AGAG) were inferred based on significant loci (AX-75745340 and AX-75745341) and also showed significant associations with the egg-laying rate, where haplotype AAGG had the highest egg-laying rate, with the exception of the egg-laying rate in P1 population, followed by other haplotypes. Furthermore, genotypes TT, AA, and GG showed the highest egg-laying rate compared to the corresponding genotypes at AX-75745366, AX-75745340, and AX-75745341 SNP loci in P1+P2, respectively. A similar result was found in the population-specific analysis except for the P1 population, in which TC genotype showed the highest egg-laying rate. No significant association was found in the egg-laying rate during the 60 days laying period for the SNPs (AX-75745380 and AX-75745388) in any group of population (p ≥ 0.05). Collectively, we report for the first time that 3 SNPs in the RAPGEF6 gene were significantly associated with the egg-laying rate during the later stage of egg production, which could be used as the potential candidate molecular genetic markers that would be able to facilitate in the selection and improvement of egg production traits through chicken breeding.

Volume 10
Pages None
DOI 10.3390/genes10050384
Language English
Journal Genes

Full Text