International Journal of Environmental Research and Public Health | 2021

Comprehensive Risk Assessment of Schistosomiasis Epidemic Based on Precise Identification of Oncomelania hupensis Breeding Grounds—A Case Study of Dongting Lake Area

 
 
 
 

Abstract


Spatio-temporal epidemic simulation, assessment, and risk monitoring serve as the core to establishing and improving the national public health emergency management system. In this study, we investigated Oncomelania hupensis breeding grounds and analyzed the locational and environmental preferences of snail breeding in Dongting Lake (DTL), Hunan, China. Using geographic information systems and remote sensing technology, we identified schistosomiasis risk areas and explored the factors affecting the occurrence and transmission of the disease. Several key conclusions were drawn. (1) From 2006 to 2016, the spatial change of potential O. hupensis breeding risk showed a diminishing trend from the eastern and northern regions to southwest DTL. Environmental changes in the eastern DTL region resulted in the lakeside and hydrophilic agglomerations of the O. hupensis populations. The shift in snail breeding grounds from a fragmented to centralized distribution indicates the weakening mobility of the O. hupensis population, the increasing independence of solitary groups, and the growing dependence of the snail population to the local environment. (2) The spatial risk distribution showed a descending gradient from west Dongting area to the east and an overall pattern of high in the periphery of large lakes and low in other areas. The cold-spot areas had their cores in Huarong County and Anxiang County and were scattered throughout the peripheral areas. The hot-spot areas had their center at Jinshi City, Nanxian County, and the southern part of Huarong County. The areas with increased comprehensive risks changed from centralized and large-scale development to fragmented shrinkage with increased partialization in the core area. The risk distribution’s center shifted to the northwest. The spatial risk distribution exhibited enhanced concentricity along the major axis and increased dispersion along the minor axis.

Volume 18
Pages None
DOI 10.3390/ijerph18041950
Language English
Journal International Journal of Environmental Research and Public Health

Full Text