International Journal of Molecular Sciences | 2019

Epithelial to Mesenchymal Transition in Human Mesothelial Cells Exposed to Asbestos Fibers: Role of TGF-β as Mediator of Malignant Mesothelioma Development or Metastasis via EMT Event

 
 
 
 
 

Abstract


Asbestos exposure increases the risk of asbestosis and malignant mesothelioma (MM). Both fibrosis and cancer have been correlated with the Epithelial to Mesenchymal Transition (EMT)—an event involved in fibrotic development and cancer progression. During EMT, epithelial cells acquire a mesenchymal phenotype by modulating some proteins. Different factors can induce EMT, but Transforming Growth Factor β (TGF-β) plays a crucial role in promoting EMT. In this work, we verified if EMT could be associated with MM development. We explored EMT in human mesothelial cells (MeT-5A) exposed to chrysotile asbestos: we demonstrated that asbestos induces EMT in MeT-5A cells by downregulating epithelial markers E-cadherin, β-catenin, and occludin, and contemporarily, by upregulating mesenchymal markers fibronectin, α-SMA, and vimentin, thus promoting EMT. In these cells, this mechanism is mediated by increased TGF-β secretion, which in turn downregulates E-cadherin and increases fibronectin. These events are reverted in the presence of TGF-β antibody, via a Small Mother Against Decapentaplegic (SMAD)-dependent pathway and its downstream effectors, such as Zinc finger protein SNAI1 (SNAIL-1), Twist-related protein (Twist), and Zinc Finger E-Box Binding Homeobox 1 (ZEB-1), which downregulate the E-cadherin gene. Since SNAIL-1, Twist, and ZEB-1 have been shown to be overexpressed in MM, these genes could be considered possible predictive or diagnostic markers of MM development.

Volume 20
Pages None
DOI 10.3390/ijms20010150
Language English
Journal International Journal of Molecular Sciences

Full Text