International Journal of Molecular Sciences | 2021

Interactome Analysis of iPSC Secretome and Its Effect on Macrophages In Vitro

 
 
 
 
 
 
 
 
 

Abstract


Simple Summary Macrophages play essential role in repair, regeneration and tissue remodeling. Role of macrophages in progression of lung fibrosis is established. Secretome of Induced pluripotent stem cells (iPSC-CM) has shown to reduce lung fibrosis and regulate macrophage phenotype, however exact mechanism is not known. Using advanced bioinformatics analysis by gene network analysis in this study we identified two components AAP and ELAVL-1 present in the iPSC-CM playing important role in regulation of macrophage phenotype. In this invitro study we confirmed experimentally that AAP and ELAVL1 play essential role by changing the profibrotic phenotype of the macrophages to pro resolution macrophages. We demonstrate reduction in gene expression and cytokine secretion of profibrotic macrophages after iPSC-CM treatment. Our study confirms antifibrotic and regenerative potential of iPSC-CM. Abstract Induced pluripotent stem cell secretome (iPSC-CM) mitigate organ injury and help in repair. Macrophages play a critical role in tissue repair and regeneration and can be directed to promote tissue repair by iPSC-CM, although the exact mechanisms are not known. In the current investigative study, we evaluated the possible mechanism by which iPSC-CM regulates the phenotype and secretory pattern of macrophages in vitro. Macrophages were obtained from human peripheral blood mononuclear cells and differentiated to various subpopulations and treated with either iPSC-CM or control media in vitro. Macrophage phenotype was assessed by flow cytometry, gene expression changes by qRT PCR and secretory pattern by multiplex protein analysis. The protein and gene interaction network revealed the involvement of Amyloid precursor protein (APP) and ELAV-like protein 1 (ELAVL-1) both present in the iPSC-CM to play an important role in regulating the macrophage phenotype and their secretory pattern. This exploratory study reveals, in part, the possible mechanism and identifies two potential targets by which iPSC-CM regulate macrophages and help in repair and regeneration.

Volume 22
Pages None
DOI 10.3390/ijms22020958
Language English
Journal International Journal of Molecular Sciences

Full Text