International Journal of Molecular Sciences | 2021

Enzymatic Decontamination of G-Type, V-Type and Novichok Nerve Agents



Organophosphorus nerve agents (OPNAs) are highly toxic compounds inhibiting cholinergic enzymes in the central and autonomic nervous systems and neuromuscular junctions, causing severe intoxications in humans. Medical countermeasures and efficient decontamination solutions are needed to counteract the toxicity of a wide spectrum of harmful OPNAs including G, V and Novichok agents. Here, we describe the use of engineered OPNA-degrading enzymes for the degradation of various toxic agents including insecticides, a series of OPNA surrogates, as well as real chemical warfare agents (cyclosarin, sarin, soman, tabun, VX, A230, A232, A234). We demonstrate that only two enzymes can degrade most of these molecules at high concentrations (25 mM) in less than 5 min. Using surface assays adapted from NATO AEP-65 guidelines, we further show that enzyme-based solutions can decontaminate 97.6% and 99.4% of 10 g∙m−2 of soman- and VX-contaminated surfaces, respectively. Finally, we demonstrate that these enzymes can degrade ethyl-paraoxon down to sub-inhibitory concentrations of acetylcholinesterase, confirming their efficacy from high to micromolar doses.

Volume 22
Pages None
DOI 10.3390/ijms22158152
Language English
Journal International Journal of Molecular Sciences

Full Text