Insects | 2021

Two Haplotypes of Aedes aegypti Detected by ND4 Mitochondrial Marker in Three Regions of Ecuador

 
 
 
 
 
 
 
 

Abstract


Simple Summary The yellow fever mosquito, Aedes aegypti, is a widespread species associated with the transmission of vector-borne diseases across tropical and subtropical areas of the world. The genetic variability of its populations has been assessed with the use of several molecular markers to understand aspects of the population dynamics and their implication in disease transmission. However, the genetic diversity of Ecuadorian populations of the vector have not been investigated. In this study, we evaluated the genetic diversity of Ecuadorian populations of Ae. aegypti from 17 sites (Galapagos Islands, Amazon basin, and Coastal regions). These analyses revealed the presence of only two haplotypes among the Ecuadorian population of the vector. Haplotype 1, appears to be related to previously reported haplotypes from America, Asia, and West Africa. While haplotype 2 is only related to samples from America. The genetic diversity of Ecuadorian populations seems to be low, according to different statistical analyses, which show only one main population across sampled localities and no effect of the main geographical barriers. Understanding the genetic diversity of local populations is a key element in vector control strategies. Abstract Aedes aegypti, also known as the yellow fever mosquito, is the main vector of several arboviruses. In Ecuador, dengue and chikungunya are the most prevalent mosquito-borne diseases. Hence, there is a need to understand the population dynamics and genetic structure of the vector in tropical areas for a better approach towards effective vector control programs. This study aimed to assess the genetic diversity of Ae. aegypti, through the analyses of the mitochondrial gene ND4, using a combination of phylogenetic and population genetic structure from 17 sites in Ecuador. Results showed two haplotypes in the Ecuadorian populations of Ae. aegypti. Haplotype 1 was closely related to Ae. aegypti reported from America, Asia, and West Africa. Haplotype 2 was only related to samples from America. The sampled vectors from the diverse localities showed low nucleotide diversity (π = 0–0.01685) and genetic differentiation (FST = 0.152). AMOVA analyses indicated that most of the variation (85–91%) occurred within populations, suggesting that geographical barriers have little effect on the genetic structure of Ecuadorian populations of Ae. aegypti. These results agree with the one main population (K = 1) detected by Structure. Vector genetic identity may be a key factor in the planning of vector control strategies.

Volume 12
Pages None
DOI 10.3390/insects12030200
Language English
Journal Insects

Full Text