Insects | 2021

Preliminary Report on the Acquisition, Persistence, and Potential Transmission of Citrus tristeza virus by Diaphorina citri

 
 
 
 
 
 
 

Abstract


Simple Summary Citrus tristeza virus (CTV) is the causal agent of one of the most serious diseases of citrus and is described to be vectored by several aphid species. There have been no published reports of either acquisition or transmission of CTV by other insects, including phloem-feeding sternorrhynchans. The Asian citrus psyllid Diaphorina citri is an economically important pest since it is the vector of the bacterium associated with Huanglongbing (HLB) in citrus crops. We hereby reported the detection of CTV from field-collected D. citri and estimated the ability of these insects to acquire and transmit the virus. Under controlled conditions, D. citri nymphs were shown to acquire CTV from citrus trees, and the virus persisted in the psyllids for over 15 days. Controlled experiments also suggest that D. citri transmit CTV to healthy citrus plants but not to orange jasmine plants, a favorite host of D. citri. The results indicate D. citri is a potential vector of pathogens for two major citrus diseases: HLB and Citrus tristeza. Abstract Citrus tristeza virus (CTV) is one of the most important citrus tree viruses: a graft-transmissible virus that can be vectored by several aphid species. Diaphorina citri is the insect vector of “Candidatus Liberibacter spp.”, a bacterium associated with citrus Huanglongbing (HLB). However, no detailed description of the relationship between CTV and D. citri has been reported. In this study, D. citri adults collected from CTV-infected “Shatangju” mandarin, “Newhall” sweet orange, and “fingered citron” trees in different orchards yielded CTV-positive rates of 40%, 65%, and 95%, respectively, upon detection by conventional PCR. Illumina HiSeq sequencing followed by de novo assembly recovered the primary full CTV genome from the RNA of 30 D. citri adults sampled from CTV-positive citrus plants. Molting and adult emergence did not affect the presence or titers of CTV within the D. citri; however, the persistence of CTV in psyllids varied among different host plant species. Groups of 10 D. citri (from a population 85% CTV-positive) were shown to potentially transmit CTV to two citrus species, “Shatangju” mandarin and “Eureka” lemon, yielding 58.33% and 83.33% CTV-positive plants, respectively. No transmission of CTV to orange jasmine plants occurred. Thus, this study reports on the ability of D. citri to acquire and transmit CTV, making D. citri as a vector of two important citrus pathogens, warranting further attention and investigation.

Volume 12
Pages None
DOI 10.3390/insects12080735
Language English
Journal Insects

Full Text