Journal of Clinical Medicine | 2021

Usefulness of Respiratory Mechanics and Laboratory Parameter Trends as Markers of Early Treatment Success in Mechanically Ventilated Severe Coronavirus Disease: A Single-Center Pilot Study

 
 
 
 
 
 
 
 
 

Abstract


Whether a patient with severe coronavirus disease (COVID-19) will be successfully liberated from mechanical ventilation (MV) early is important in the COVID-19 pandemic. This study aimed to characterize the time course of parameters and outcomes of severe COVID-19 in relation to the timing of liberation from MV. This retrospective, single-center, observational study was performed using data from mechanically ventilated COVID-19 patients admitted to the ICU between 1 March 2020 and 15 December 2020. Early liberation from ventilation (EL group) was defined as successful extubation within 10 days of MV. The trends of respiratory mechanics and laboratory data were visualized and compared between the EL and prolonged MV (PMV) groups using smoothing spline and linear mixed effect models. Of 52 admitted patients, 31 mechanically ventilated COVID-19 patients were included (EL group, 20 (69%); PMV group, 11 (31%)). The patients’ median age was 71 years. While in-hospital mortality was low (6%), activities of daily living (ADL) at the time of hospital discharge were significantly impaired in the PMV group compared to the EL group (mean Barthel index (range): 30 (7.5–95) versus 2.5 (0–22.5), p = 0.048). The trends in respiratory compliance were different between patients in the EL and PMV groups. An increasing trend in the ventilatory ratio during MV until approximately 2 weeks was observed in both groups. The interaction between daily change and earlier liberation was significant in the trajectory of the thrombin–antithrombin complex, antithrombin 3, fibrinogen, C-reactive protein, lymphocyte, and positive end-expiratory pressure (PEEP) values. The indicator of physiological dead space increases during MV. The trajectory of markers of the hypercoagulation status, inflammation, and PEEP were significantly different depending on the timing of liberation from MV. These findings may provide insight into the pathophysiology of COVID-19 during treatment in the critical care setting.

Volume 10
Pages None
DOI 10.3390/jcm10112513
Language English
Journal Journal of Clinical Medicine

Full Text