Journal of Fungi | 2021

Citronellal Exerts Its Antifungal Activity by Targeting Ergosterol Biosynthesis in Penicillium digitatum

 
 
 
 
 
 

Abstract


Ergosterol (ERG) is a potential target for the development of antifungal agents against Penicillium digitatum, the pathogen of green mold in citrus fruits. This study examined the mechanism by which citronellal, a typical terpenoid of Cymbopogon nardus essential oil, acts on ergosterol to exhibit its antifungal activity against P. digitatum. We previously reported that citronellal inhibited the growth of P. digitatum with minimum inhibitory concentration (MIC) and minimum fungicidal concentration (MFC) of 1.36 and 2.72 mg/mL, respectively. In citronellal-treated cells, the membrane integrity and ergosterol contents significantly decreased, whereas lanosterol, which serves as a precursor for ergosterol biosynthesis, massively accumulated. Addition of 150 mg/L of exogenous ergosterol decreased the inhibitory rate of citronellal, restoring the ergosterol content and hence the membrane structure to normal levels, and triggered expression of nearly all ERG genes. Based on our findings, we deduce that citronellal damages the cell membrane integrity of P. digitatum by down-regulating the ERG genes responsible for conversion of lanosterol to ergosterol, the key downregulated gene being ERG3, due to the observed accumulation of ergosta-7,22-dienol.

Volume 7
Pages None
DOI 10.3390/jof7060432
Language English
Journal Journal of Fungi

Full Text