Materials | 2019

Magnetic Fe2O3–SiO2–MeO2–Pt (Me = Ti, Sn, Ce) as Catalysts for the Selective Hydrogenation of Cinnamaldehyde. Effect of the Nature of the Metal Oxide

 
 
 
 

Abstract


The type of metal oxide affects the activity and selectivity of Fe2O3–SiO2–MeO2–Pt (Me = Ti, Sn, Ce) catalysts on the hydrogenation of cinnamaldehyde. The double shell structure design is thought to protect the magnetic Fe2O3 cores, and also act as a platform for depositing a second shell of TiO2, SnO2 or CeO2 metal oxide. To obtain a homogeneous metallic dispersion, the incorporation of 5 wt % of Pt was carried out over Fe2O3–SiO2–MeO2 (Me = Ti, Sn, Ce) structures modified with (3-aminopropyl)triethoxysilane by successive impregnation-reduction cycles. The full characterization by HR-TEM, STEM-EDX, XRD, N2 adsorption isotherm at −196 °C, TPR-H2 and VSM of the catalysts indicates that homogeneous core-shell structures with controlled nano-sized magnetic cores, multi-shells and metallic Pt were obtained. The nature of the metal oxide affects the Pt nanoparticle sizes where the mean Pt diameter is in the order: –TiO2–Pt > –SnO2–Pt > –CeO2–Pt. Among the catalysts studied, –CeO2–Pt had the best catalytic performance, reaching the maximum of conversion at 240 min. of reaction without producing hydrocinnamaldehyde (HCAL). It also showed a plot volcano type for the production of cinnamic alcohol (COL), with 3-phenyl-1-propanol (HCOL) as a main product. The –SnO2–Pt catalyst showed a poor catalytic performance attributable to the Pt clusters’ occlusion in the irregular surface of the –SnO2. Finally, the –TiO2–Pt catalyst showed a continuous production of COL with a 100% conversion and 65% selectivity at 600 min of reaction.

Volume 12
Pages None
DOI 10.3390/ma12030413
Language English
Journal Materials

Full Text