Materials | 2019

Heat Source Characteristics of Ternary-Gas-Shielded Tandem Narrow-Gap GMAW

 
 
 
 
 
 

Abstract


The characteristics of the welding heat source for tandem narrow-gap gas metal arc welding are examined for different ternary shielding gas (Ar-CO2-He) compositions. Results of previous calculations of arc properties for bead-on-plate geometry are adapted to the narrow-gap geometry to predict these characteristics. The heat source concentration factor decreases and the maximum heat flux density increases as the helium content increases, which leads to an increased welding heat efficiency. Addition of CO2 up to around 10% also increases the heat efficiency. When the CO2 content exceeds 10%, the heat source concentration factor increases significantly and the heat efficiency decreases. The shielding gas composition also affects the heat source distribution. The heat source characteristics are applied to a computational fluid dynamic model of the weld pool to predict the weld shape, and the predictions are verified by experiment. The results indicate that the appropriate addition of helium to the shielding gas can increase the heat transferred to the peripheral regions of the arc and increase the sidewall penetration.

Volume 12
Pages None
DOI 10.3390/ma12091397
Language English
Journal Materials

Full Text