Materials | 2021

Experimental Study on the Influence of Tool Electrode Material on Electrochemical Micromachining of 304 Stainless Steel

 
 
 
 

Abstract


Different cathode materials have different surface chemical components and machining capacities, which may finally result in different machining quality and machining efficiency of workpieces. In this paper, in order to investigate the influence of cathode materials on the electrochemical machining of thin-walled workpiece made of 304 stainless steel, five cylindrical electrodes are used as the target working cathodes of electrochemical machining to conduct experiments and research, including 45# steel, 304 stainless steel, aluminum alloy 6061, brass H62, and tungsten steel YK15. The stray current corrosion, taper, and material removal rate were used as the criteria to evaluate the drilling quality of efficiency of a thin-walled workpiece made of 304 stainless steel. The research results show that from the perspectives of stray current corrosion and taper, aluminum alloy 6061 is an optimal tool cathode, which should be used in the electrochemical machining of thin-walled workpieces made of 304 stainless steel; on the aspect of material removal rate, the 45# steel, 304 stainless steel, and aluminum alloy 6061 present close material removal rates, all of which are higher than that of brass H62 and tungsten steel YK15. Based on comprehensive consideration of both machining quality and machining efficiency, the aluminum alloy 6061 is the best option as the cathode tool in the electrochemical machining of thin-walled workpieces made of 304 stainless steel.

Volume 14
Pages None
DOI 10.3390/ma14092311
Language English
Journal Materials

Full Text