Materials | 2021

Fiber-Reinforcing Effect in the Mechanical and Road Performance of Cement-Emulsified Asphalt Mixtures

 
 
 
 

Abstract


Cement-emulsified asphalt mixture (CEAM), a kind of cold mix asphalt mixture, has the advantages of energy conservation and emission reduction as well as easy construction. However, the performance of CEAM is not as good as hot mixed asphalt mixtures. Hence, in this study, two different fibers were adopted as the reinforcing phase to improve the comprehensive properties of CEAM. The results indicated that the addition proportion and curing time were crucial to fiber-reinforced cement-emulsified asphalt mixture (FRCEAM). The compressive strengths, water stability, and raveling resistances of FRCEAM preparations with polyester or brucite fibers (FRCEAM-PF and -BF, respectively) were enhanced significantly. FRCEAM-PF had the maximum flexural tensile strength and strain, which meant that its low-temperature performance was the best compared to FRCEAM-PF and CEAM. However, the contribution of PF to CEAM high-temperature stability was greater than that of BF. Fiber addition to CEAM not only enhanced the cycles of fatigue loading but also reduced sensitivity to changes in stress level. Furthermore, FRCEAM-BF durability was slightly better than that of FRCEAM-PF. SEM analysis indicated that fibers provided bridging and meshing effects. Although PF and BF showed different enhancement effects, both mixtures met the requirements for hot mixed asphalt mixtures.

Volume 14
Pages None
DOI 10.3390/ma14112779
Language English
Journal Materials

Full Text