Materials | 2021

Early-Age Mechanical Characteristics and Microstructure of Concrete Containing Mineral Admixtures under the Environment of Low Humidity and Large Temperature Variation

 
 
 
 
 
 
 
 

Abstract


The application of concrete containing mineral admixtures was attempted in Northwest China in this study, where the environment has the characteristics of low humidity and large temperature variation. The harsh environment was simulated by using an environmental chamber in the laboratory and four types of concrete were prepared, including ordinary concrete and three kinds of mineral admixture concretes with different contents of fly ash and blast-furnace slag. These concretes were cured in the environmental chamber according to the real curing conditions during construction. The compression strength, fracture properties, SEM images, air-void characteristics, and X-ray diffraction features were researched at the early ages of curing before 28 d. The results showed that the addition of fly ash and slag can improve the compression strength and fracture properties of concrete in the environment of low humidity and large temperature variation. The optimal mixing of mineral admixture was 10% fly ash and 20% slag by replacing the cement in concrete, which can improve the compression strength, initial fracture toughness, unstable fracture toughness, and fracture energy by 23.9%, 25.2%, 45.3%, and 22.6%, respectively, compared to ordinary concrete. Through the analysis of the microstructure of concrete, the addition of fly ash and slag can weaken the negative effects of the harsh environment of low humidity and large temperature variation on concrete microstructure and cement hydration.

Volume 14
Pages None
DOI 10.3390/ma14175085
Language English
Journal Materials

Full Text