Materials | 2021

The Mechanisms of Antibacterial Activity of Magnesium Alloys with Extreme Wettability

 
 
 
 
 
 

Abstract


In this study, we applied the method of nanosecond laser treatment for the fabrication of superhydrophobic and superhydrophilic magnesium-based surfaces with hierarchical roughness when the surface microrelief is evenly decorated by MgO nanoparticles. The comparative to the bare sample behavior of such surfaces with extreme wettability in contact with dispersions of bacteria cells Pseudomonas aeruginosa and Klebsiella pneumoniae in phosphate buffered saline (PBS) was studied. To characterize the bactericidal activity of magnesium samples with different wettability immersed into a bacterial dispersion, we determined the time variation of the planktonic bacterial titer in the dispersion. To explore the anti-bacterial mechanisms of the magnesium substrates, a set of experimental studies on the evolution of the magnesium ion concentration in liquid, pH of the dispersion medium, surface morphology, composition, and wettability was performed. The obtained data made it possible to reveal two mechanisms that, in combination, play a key role in the bacterial decontamination of the liquid. These are the alkalization of the dispersion medium and the collection of bacterial cells by microrods growing on the surface as a result of the interaction of magnesium with the components of the buffer solution.

Volume 14
Pages None
DOI 10.3390/ma14185454
Language English
Journal Materials

Full Text