Archive | 2019

Numerical Analysis, Circuit Simulation, and Control Synchronization of Fractional-Order Unified Chaotic System

 
 
 

Abstract


The traditional method of solving fractional chaotic system has the problem of low precision and is computationally cumbersome. In this paper, different fractional-order calculus solutions, the Adams prediction–correction method, the Adomian decomposition method and the improved Adomian decomposition method, are applied to the numerical analysis of the fractional-order unified chaotic system. The result shows that different methods have higher precision, smaller computational complexity, and shorter running time, in which the improved Adomian decomposition method works best. Then, based on the fractional-order chaotic circuit design theory, the circuit diagram of fractional-order unified chaotic system is designed. The result shows that the circuit simulation diagram of fractional-order unified chaotic system is basically consistent with the phase space diagram obtained from the numerical solution of the system, which verifies the existence of the fractional-order unified chaotic system of 0.9-order. Finally, the active control method is used to control and synchronize in the fractional-order unified chaotic system, and the experiment result shows that the method can achieve synchronization in a shorter time and has a better control performance.

Volume 7
Pages 1077
DOI 10.3390/math7111077
Language English
Journal None

Full Text