Metabolites | 2021

Characterization of the Plasma Lipidome in Dairy Cattle Transitioning from Gestation to Lactation: Identifying Novel Biomarkers of Metabolic Impairment

 
 
 
 
 
 
 

Abstract


The discovery of novel biomarkers for peripartal diseases in dairy cows can improve our understanding of normal and dysfunctional metabolism, and lead to nutritional interventions that improve health and milk production. Our objectives were to characterize the plasma lipidome and identify metabolites associated with common markers of metabolic disease in peripartal dairy cattle. Multiparous Holstein cows (n = 27) were enrolled 30 d prior to expected parturition. Blood and liver samples were routinely collected through to d 14 postpartum. Untargeted lipidomics was performed using quadrupole time-of-flight mass spectrometry. Based on postpartum measures, cows were categorized into low or high total fatty acid area under the curve (total FAAUC; d 1–14 postpartum; 4915 ± 1369 vs. 12,501 ± 2761 (μmol/L × 14 d); n = 18), β-hydroxybutyrate AUC (BHBAAUC; d 1–14 postpartum; 4583 ± 459 vs. 7901 ± 1206 (μmol/L × 14 d); n = 18), or liver lipid content (d 5 and 14 postpartum; 5 ± 1 vs. 12 ± 2% of wet weight; n = 18). Cows displayed decreases in plasma triacylglycerols and monoalkyl-diacylglycerols, and the majority of phospholipids reached a nadir at parturition. Phosphatidylcholines (PC) 32:3, 35:5, and 37:5 were specific for high total FAAUC, PC 31:3, 32:3, 35:5, and 37:5 were specific for high BHBAAUC, and PC 31:2, 31:3, and 32:3 were specific for high liver lipid content. PC 32:3 was specific for elevated total FA, BHBA, and liver lipid content. Lipidomics revealed a dynamic peripartal lipidome remodeling, and lipid markers associated with elevated total FA, BHBA, and liver lipid content. The effectiveness of nutrition to impact these lipid biomarkers for preventing excess lipolysis and fatty liver warrants evaluation.

Volume 11
Pages None
DOI 10.3390/metabo11050290
Language English
Journal Metabolites

Full Text