Micromachines | 2021

Process Intensification of 2,2′-(4-Nitrophenyl) Dipyrromethane Synthesis with a SO3H-Functionalized Ionic Liquid Catalyst in Pickering-Emulsion-Based Packed-Bed Microreactors

 
 
 
 

Abstract


A stable water-in-oil Pickering emulsion was fabricated with SO3H-functionalized ionic liquid and surface-modified silica nanoparticles and used for 2,2′-(4-nitrophenyl) dipyrromethane synthesis in a packed-bed microreactor, exhibiting high reaction activity and product selectivity. The compartmentalized water droplets of the Pickering emulsion had an excellent ability to confine the ionic liquid against loss under continuous-flow conditions, and the excellent durability of the catalytic system without a significant decrease in the reaction efficiency and selectivity was achieved. Compared with the reaction performance of a liquid–liquid slug-flow microreactor and batch reactor, the Pickering-emulsion-based catalytic system showed a higher specific interfacial area between the catalytic and reactant phases, benefiting the synthesis of 2,2′-(4-nitrophenyl) dipyrromethane and resulting in a higher yield (90%). This work indicated that an increase in the contact of reactants with catalytic aqueous solution in a Pickering-emulsion-based packed-bed microreactor can greatly enhance the synthetic process of dipyrromethane, giving an excellent yield of products and a short reaction time. It was revealed that Pickering-emulsion-based packed-bed microreactors with the use of ionic liquids as catalysts for interfacial catalysis have great application potential in the process of intensification of organic synthesis.

Volume 12
Pages None
DOI 10.3390/mi12070796
Language English
Journal Micromachines

Full Text