Microorganisms | 2021

Mutational Landscape and Interaction of SARS-CoV-2 with Host Cellular Components

 
 
 
 
 
 

Abstract


The emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and its rapid evolution has led to a global health crisis. Increasing mutations across the SARS-CoV-2 genome have severely impacted the development of effective therapeutics and vaccines to combat the virus. However, the new SARS-CoV-2 variants and their evolutionary characteristics are not fully understood. Host cellular components such as the ACE2 receptor, RNA-binding proteins (RBPs), microRNAs, small nuclear RNA (snRNA), 18s rRNA, and the 7SL RNA component of the signal recognition particle (SRP) interact with various structural and non-structural proteins of the SARS-CoV-2. Several of these viral proteins are currently being examined for designing antiviral therapeutics. In this review, we discuss current advances in our understanding of various host cellular components targeted by the virus during SARS-CoV-2 infection. We also summarize the mutations across the SARS-CoV-2 genome that directs the evolution of new viral strains. Considering coronaviruses are rapidly evolving in humans, this enables them to escape therapeutic therapies and vaccine-induced immunity. In order to understand the virus’s evolution, it is essential to study its mutational patterns and their impact on host cellular machinery. Finally, we present a comprehensive survey of currently available databases and tools to study viral–host interactions that stand as crucial resources for developing novel therapeutic strategies for combating SARS-CoV-2 infection.

Volume 9
Pages None
DOI 10.3390/microorganisms9091794
Language English
Journal Microorganisms

Full Text