Nanomaterials | 2019

Manufacture of Highly Transparent and Hazy Cellulose Nanofibril Films via Coating TEMPO-Oxidized Wood Fibers

 
 
 
 

Abstract


Traditionally, inorganic nanoparticles (SiO2, TiO2) have been utilized to tune the optical haze of optoelectronic devices. However, restricted to complex and costly processes for incorporating these nanoparticles, a simple and low-cost approach becomes particularly important. In this work, a simple, effective, and low-cost method was proposed to improve optical haze of transparent cellulose nanofibril films by directly depositing micro-sized 2,2,6,6-tetramethylpiperidine-1-oxyl (TEMPO)-oxidized wood fibers (“coating” method). The obtained films had a high total transmittance of 85% and a high haze of 62%. The film samples also showed a high tensile strength of 80 MPa and excellent thermal stability. Dual sides of the obtained films had different microstructures: one side was extremely smooth (root-mean-square roughness of 6.25 nm), and the other was extremely rough (root-mean-square roughness of 918 nm). As a reference, micro-sized TEMPO-oxidized wood fibers and cellulose nanofibrils were mixed to form a transparent and hazy film (“blending” method). These results show that hazy transparent films prepared using the “coating” method exhibit superior application performances than films prepared using the “blending” method.

Volume 9
Pages None
DOI 10.3390/nano9010107
Language English
Journal Nanomaterials

Full Text