Nutrients | 2021

Consumption of a High-Protein Meal Replacement Leads to Higher Fat Oxidation, Suppression of Hunger, and Improved Metabolic Profile After an Exercise Session

 
 
 
 
 
 
 
 

Abstract


The aim of this study was to compare the impact of a high-protein meal replacement (HP-MR) versus a control (CON) breakfast on exercise metabolism. In this acute, randomized controlled, cross-over study, participants were allocated into two isocaloric arms: (a) HP-MR: 30% carbohydrate, 43% protein, and 27% fat; (b) CON: 55% carbohydrate, 15% protein, and 30% fat. Following breakfast, participants performed a moderate-intensity aerobic exercise while inside a whole-body calorimetry unit. Energy expenditure, macronutrient oxidation, appetite sensations, and metabolic blood markers were assessed. Forty-three healthy, normal-weight adults (24 males) participated. Compared to the CON breakfast, the HP-MR produced higher fat oxidation (1.07 ± 0.33 g/session; p = 0.003) and lower carbohydrate oxidation (−2.32 ± 0.98 g/session; p = 0.023) and respiratory exchange ratio (−0.01 ± 0.00; p = 0.003) during exercise. After exercise, increases in hunger were lower during the HP-MR condition. Changes in blood markers from the fasting state to post-exercise during the HP-MR condition were greater for insulin, low-density lipoprotein cholesterol, peptide tyrosine-tyrosine, and gluca-gon-like peptide 1, and lower for triglyceride and glycerol. Our primary findings were that a HP-MR produced higher fat oxidation during the exercise session, suppression of hunger, and improved metabolic profile after it.

Volume 13
Pages None
DOI 10.3390/nu13010155
Language English
Journal Nutrients

Full Text