Pathogens | 2021

Simvastatin Reduces Protection and Intestinal T Cell Responses Induced by a Norovirus P Particle Vaccine in Gnotobiotic Pigs

 
 
 
 
 
 
 
 

Abstract


Noroviruses (NoVs) are a leading cause of acute gastroenteritis worldwide. P particles are a potential vaccine candidate against NoV. Simvastatin is a cholesterol-reducing drug that is known to increase NoV infectivity. In this study, we examined simvastatin’s effects on P particle-induced protective efficacy and T-cell immunogenicity using the gnotobiotic pig model of human NoV infection and diarrhea. Pigs were intranasally inoculated with three doses (100 µg/dose) of GII.4/VA387-derived P particles together with monophosphoryl lipid A and chitosan adjuvants. Simvastatin-fed pigs received 8 mg/day orally for 11 days prior to challenge. A subset of pigs was orally challenged with 10 ID50 of a NoV GII.4/2006b variant at post-inoculation day (PID) 28 and monitored for 7 days post-challenge. Intestinal and systemic T cell responses were determined pre- and postchallenge. Simvastatin abolished the P particle’s protection and significantly increased diarrhea severity after NoV infection. Simvastatin decreased proliferation of virus-specific and non-specific CD8 T cells in duodenum and virus-specific CD4 and CD8 T cells in spleen and significantly reduced numbers of intestinal mononuclear cells in vaccinated pigs. Furthermore, simvastatin significantly decreased numbers of duodenal CD4+IFN-γ+, CD8+IFN-γ+ and regulatory T cells and total duodenal activated CD4+ and CD8+ T cells in vaccinated pigs pre-challenge at PID 28. Following challenge, simvastatin prevented the IFN-γ+ T cell response in spleen of vaccinated pigs. These results indicate that simvastatin abolished P particle vaccine-induced partial protection through, at least in part, impairing T cell immunity. The findings have specific implications for the development of preventive and therapeutic strategies against NoV gastroenteritis, especially for the elderly population who takes statin-type drugs.

Volume 10
Pages None
DOI 10.3390/pathogens10070829
Language English
Journal Pathogens

Full Text