Polymers | 2019

Hydrosilylation of Reactive Quantum Dots and Siloxanes for Stable Quantum Dot Films

 
 
 
 

Abstract


The reactive acrylate-terminated CdZnSeS/ZnS quantum dots (QDs) were designed and prepared by the effective synthetic route to bond with a siloxane matrix via hydrosilylation. The conventional QD with oleic acid ligands does not have any reactivity, so the QDs were functionalized to assign reactivity for the QDs by the ligand modification of two step reactions. The oleic acid of the QDs was exchanged for hydroxyl-terminated ligands as an intermediate product by one-pot reaction. The hydroxyl-terminated QDs and acrylate-containing isocyanates were combined by nucleophilic addition reaction with forming urethane bonds and terminal acrylate groups. No degradation in quantum yield was observed after ligand exchange, nor following the nucleophilic addition reaction. The modification reactions of ligands were quantitatively controlled and their molecular structures were precisely confirmed by FT-IR and 1H-NMR. The QDs with acrylate ligands were then reacted with hydride-terminated polydimethylsiloxane (H-PDMS) to form a QD-siloxane matrix by thermal curing via hydro-silylation for the first time. The covalent bonding between the QDs and the siloxane matrix led to improvements in the stability against oxygen and moisture. Stability at 85 °C and 85% relative humidity (RH) were both improved by 22% for the QD-connected siloxane QD films compared with the corresponding values for conventional QD-embedded poly(methylmethacrylate) (PMMA) films. The photo-stability of the QD film after 26 h under a blue light-emitting diode (LED) was also improved by 45% in comparison with those of conventional QD-embedded PMMA films.

Volume 11
Pages None
DOI 10.3390/polym11050905
Language English
Journal Polymers

Full Text