Polymers | 2019

Influence of the Test Method on the Characterization of the Fatigue Delamination Behavior of a Composite Material under Mixed Mode I/II Fracture

 
 
 
 
 

Abstract


Composite materials manufactured by overlapping plies with certain specific geometries are likely to lose part of their strength due to the presence of internally delaminated regions. The aim of this paper is to experimentally evaluate the generation and propagation of these interlaminar cracks in a carbon-epoxy composite material subjected to fatigue loading under mixed mode I/II fracture. Two different test methods were used for this purpose: The standardized mixed-mode bending (MMB) test and the asymmetric double cantilever beam (ADCB) test, with the goal of exploring the viability of the ADCB test as a simpler alternative to perform than the MMB test, especially in fatigue testing. With this aim in mind and after prior static characterization of the material in which the critical values of the energy release rate were determined under both test methods, the levels of the energy release rate to be applied in fatigue tests were defined for two mode mixity ratios, GII/Gc = 0.2 and 0.4 (0.34 ADCB), and a fatigue loading ratio, R = Gmin/Gmax = 0.1. The G-N fatigue onset curves were subsequently obtained from these experimental data. The most relevant result of the study is that the fatigue limits obtained using the MMB method are generally more conservative than those obtained via the ADCB method.

Volume 11
Pages None
DOI 10.3390/polym11111788
Language English
Journal Polymers

Full Text