Polymers | 2021

Ballistic Performance of Guaruman Fiber Composites in Multilayered Armor System and as Single Target

 
 
 
 
 
 

Abstract


Multilayered armor systems (MAS) with a front ceramic layer backed by a relatively unknown Amazonian guaruman fiber-reinforced (Ischnosiphon koem) epoxy composites, as second layer, were for the first time ballistic tested against the threat of 7.62 mm rifle ammunition. The amount of 30 vol% guaruman fibers was investigated in three distinct configurations: (i) continuous aligned, (ii) 0–90° cross-laid, and (iii) short-cut randomly dispersed. Additionally, single-target ballistic tests were also carried out in the best MAS-performed composite with cross-laid guaruman fibers against .22 caliber ammunition. The results disclosed that all composites as MAS second layer attended the US NIJ standard with corresponding penetration depth of (i) 32.9, (ii) 27.5, and (iii) 29.6 mm smaller than the lethal limit of 44 mm in a clay witness simulating a personal body. However, the continuous aligned guaruman fiber composite lost structural integrity by delamination after the 7.62 projectile impact. By contrast, the composite with cross-laid guaruman fibers kept its integrity for subsequent shootings as recommended by the standard. The single-target tests indicated a relatively higher limit velocity for .22 caliber projectile perforation, 255 m/s, and absorbed energy of 106 J for the cross-laid guaruman fibers, which are superior to corresponding results for other less known natural fiber epoxy composites.

Volume 13
Pages None
DOI 10.3390/polym13081203
Language English
Journal Polymers

Full Text