Remote. Sens. | 2019

Using TSX/TDX Pursuit Monostatic SAR Stacks for PS-InSAR Analysis in Urban Areas

 
 
 
 
 

Abstract


Persistent Scatterer Interferometry (PS-InSAR) has become an indispensable tool for monitoring surface motion in urban environments. The interferometric configuration of PS-InSAR tends to mix topographic and deformation components in differential interferometric observations. When the upcoming constellation missions such as, e.g., TanDEM-L or TWIN-L provide new standard operating modes, bi-static stacks for deformation monitoring will be more commonly available in the near future. In this paper, we present an analysis of the applicability of such data sets for urban monitoring, using a stack of pursuit monostatic data obtained during the scientific testing phase of the TanDEM-X (TDX) mission. These stacks are characterized by extremely short temporal baselines between the TerraSAR-X (TSX) and TanDEM-X acquisitions at the same interval. We evaluate the advantages of this acquisition mode for urban deformation monitoring with several of the available acquisition pairs. Our proposed method exploits the special properties of this data using a modified processing chain based on the standard PS-InSAR deformation monitoring procedure. We test our approach with a TSX/TDX mono-static pursuit stack over Guangzhou, using both the proposed method and the standard deformation monitoring procedure, and compare the two results. The performance of topographic and deformation estimation is improved by using the proposed processing method, especially regarding high-rise buildings, given the quantitative statistic on temporal coherence, detectable numbers, as well as the PS point density of persistent scatters points, among which the persistent scatter numbers increased by 107.2% and the detectable height span increased by 78% over the standard processing results.

Volume 11
Pages 26
DOI 10.3390/rs11010026
Language English
Journal Remote. Sens.

Full Text