Remote. Sens. | 2019

Precise Antenna Pointing Determination in Elevation for Spaceborne SAR Systems Using Coherent Pattern Differences

 
 
 
 
 
 

Abstract


The precise determination of the SAR antenna pointing is an essential task initially performed during the commissioning phase of a spaceborne SAR system and permanently monitored during the whole mission life time. Besides a correct illumination of the scene during data acquisition, the antenna pointing is required for proper compensation of the radiation pattern for radiometric correction during SAR data processing. The Amazon rainforest is a well-established target area for antenna pointing estimation in elevation as proven by many past and current SAR missions. Several new SAR systems are now proposed which are using long wavelengths, i.e. L- and P-band, which will be implemented using reflector based antenna systems. These reflectors have - in contrast to planar phased array antennas - no completely rigid connection to the satellite body and hence a more volatile antenna pointing. Due to the huge dimensions of such reflector antennas required for the envisaged long wavelengths and the finite stiffness of the boom, the antenna pointing may change significantly along the orbit. Such variation cannot be tracked using the common Amazon rainforest approach only as this measurement opportunity exists only at two positions along the orbit (ascending and descending). \nHere the performance of an alternative technique is presented which mitigates the influence of the underlying SAR scene by employing two coherent SAR data sets acquired simultaneously with different antenna patterns. This allows the use of amplitude and phase information for pointing estimation. No assumption upon the homogeneity of the underlying scene is required and hence pointing estimation becomes feasible at nearly any point along the orbit. This paper outlines the technique, describes simulation results and presents outcomes from first experimental acquisitions performed with the TerraSAR-X satellite.

Volume 11
Pages 320
DOI 10.3390/rs11030320
Language English
Journal Remote. Sens.

Full Text