Remote. Sens. | 2021

sUAS Remote Sensing to Evaluate Geothermal Seep Interactions with the Yellowstone River, Montana, USA

 
 
 

Abstract


Small unmanned aerial systems (sUAS) are becoming increasingly popular due to their affordability and logistical ease for repeated surveys. While sUAS-based remote sensing has many applications in water resource management, their applicability and limitations in fluvial settings is not well defined. This study uses a combined thermal-optic sUAS to monitor the seasonal geothermal influence of a 1-km-long reach of the Yellowstone River, paired with in-situ streambed temperature profiles to evaluate geothermal seep interactions with Yellowstone River in Montana, USA. Accurate river water surface elevation along the shoreline was estimated using structure from motion (SfM) photogrammetry digital surface models (DSMs); however, water surface elevations were unreliable in the main river channel. Water temperature in thermal infrared (TIR) orthomosaics was accurate in temperature ranges of tens of degrees (>≈30 °C), but not as accurate in temperature ranges of several degrees (>≈15 °C) as compared to in-situ water temperature measurements. This allowed for identification of geothermal features but limited the ability to identify small-scale temperature changes due to river features, such as pools and riffles. The study concludes that rivers with an average width greater than or equal to 123% of the ground area covered by a TIR image will be difficult to study using structure from motion photogrammetry, given Federal Aviation Administration (FAA) altitude restrictions and sensor field of view. This study demonstrates the potential of combined thermal-optic sUAS systems to collect data over large river systems, and when combined with in-situ measurements, can further increase the sUAS utility in identifying river characteristics.

Volume 13
Pages 163
DOI 10.3390/rs13020163
Language English
Journal Remote. Sens.

Full Text