Remote. Sens. | 2021

Using A Sliding Window Phase Matching Method for Imaging of GNSS Radio Occultation Signals

 
 
 
 
 
 

Abstract


Global Navigation Satellite System Radio Occultation (GNSS-RO) is a technique used to sound the atmosphere and derive vertical profiles of refractivity. Signals from GNSS satellites are received in a low-Earth orbit, and they are then processed to produce bending angle profiles, from which meteorological parameters can be retrieved. Generating two-dimensional images in the form of spectrograms from GNSS-RO signals is commonly done to, for instance, investigate reflections or estimate signal quality in the lower troposphere. This is typically implemented using, e.g., the Short-Time Fourier Transform (STFT) to produce a time-frequency representation that is subsequently transformed to bending angle (BA) and impact height (IH) coordinates by non-linear mapping. In this paper, we propose an alternative method based on a straightforward extension of the Phase Matching (PM) operator to produce two-dimensional spectral images in the BA-IH domain by applying a sliding window. This Sliding Window Phase Matching (SWPM) method generates the spectral amplitude on an arbitrary grid in BA and IH, e.g., along the coordinate axes. To illustrate, we show both SWPM and STFT methods applied to operational MetOp-A data. For SWPM we use a constant window in the BA-dimension, whereas for STFT we use a conventional constant time window. We show that the SWPM method produces the same result as STFT when the same window length is used for both methods. The sample points in impact parameter and bending angle are those generated by and the main advantage is that SWPM offers the user a convenient way to freely sample the BA-IH space. The cost for this is processing time that is somewhat longer than implementations based on the Fast Fourier Transform, such as the STFT method.

Volume 13
Pages 970
DOI 10.3390/rs13050970
Language English
Journal Remote. Sens.

Full Text