Remote Sensing | 2021

Adversarial Self-Supervised Learning for Robust SAR Target Recognition

 
 
 
 
 
 

Abstract


Synthetic aperture radar (SAR) can perform observations at all times and has been widely used in the military field. Deep neural network (DNN)-based SAR target recognition models have achieved great success in recent years. Yet, the adversarial robustness of these models has received far less academic attention in the remote sensing community. In this article, we first present a comprehensive adversarial robustness evaluation framework for DNN-based SAR target recognition. Both data-oriented metrics and model-oriented metrics have been used to fully assess the recognition performance under adversarial scenarios. Adversarial training is currently one of the most successful methods to improve the adversarial robustness of DNN models. However, it requires class labels to generate adversarial attacks and suffers significant accuracy dropping on testing data. To address these problems, we introduced adversarial self-supervised learning into SAR target recognition for the first time and proposed a novel unsupervised adversarial contrastive learning-based defense method. Specifically, we utilize a contrastive learning framework to train a robust DNN with unlabeled data, which aims to maximize the similarity of representations between a random augmentation of a SAR image and its unsupervised adversarial example. Extensive experiments on two SAR image datasets demonstrate that defenses based on adversarial self-supervised learning can obtain comparable robust accuracy over state-of-the-art supervised adversarial learning methods.

Volume None
Pages None
DOI 10.3390/rs13204158
Language English
Journal Remote Sensing

Full Text