Sensors (Basel, Switzerland) | 2021

Automatic Modulation Recognition Based on a DCN-BiLSTM Network

 
 
 

Abstract


Automatic modulation recognition (AMR) is a significant technology in noncooperative wireless communication systems. This paper proposes a deep complex network that cascades the bidirectional long short-term memory network (DCN-BiLSTM) for AMR. In view of the fact that the convolution operation of the traditional convolutional neural network (CNN) loses the partial phase information of the modulated signal, resulting in low recognition accuracy, we first apply a deep complex network (DCN) to extract the features of the modulated signal containing phase and amplitude information. Then, we cascade bidirectional long short-term memory (BiLSTM) layers to build a bidirectional long short-term memory model according to the extracted features. The BiLSTM layers can extract the contextual information of signals well and address the long-term dependence problems. Next, we feed the features into a fully connected layer. Finally, a softmax classifier is used to perform classification. Simulation experiments show that the performance of our proposed algorithm is better than that of other neural network recognition algorithms. When the signal-to-noise ratio (SNR) exceeds 4 dB, our model’s recognition rate for the 11 modulation signals can reach 90%.

Volume 21
Pages None
DOI 10.3390/s21051577
Language English
Journal Sensors (Basel, Switzerland)

Full Text