Sensors (Basel, Switzerland) | 2021

Response of Transitional Mixtures Retaining Memory of In-Situ Overburden Pressure Monitored Using Electromagnetic and Piezo Crystal Sensors

 
 
 

Abstract


The major and minor components in granular soil materials determine their properties and behavior. This study explores the transitional behavior within threshold fines fraction of soil mixtures based on the data from the literature and experiments. From the literature survey, the void ratio, shear wave velocity, compression index, and friction angle capture the transitional turning point between the low and data-adjusted high threshold fines fractions. In particular, there is a dramatic change in hydraulic conductivity below the low threshold fines fraction that highlights the critical role of small amounts of fines in the fluid flow (e.g., clogging). From an experimental study, the engineering properties of natural soil samples identified using deformation and elastic wave sensors show transitional trends within the Revised Soil Classification System framework. The evolution of compressibility and shear wave velocity indicate that either coarse, fine, or both particles are likely to contribute to large and small strain stiffnesses when the effective stress is below 400 kPa. Thereafter, both engineering properties indicate that the soil sample retains a memory of in-situ overburden pressure when the effective stress is around 400 kPa. There is a critical role of fines that are slightly higher than low threshold fines fraction on engineering properties that promote the application of Revised Soil Classification System RSCS to natural soils.

Volume 21
Pages None
DOI 10.3390/s21072570
Language English
Journal Sensors (Basel, Switzerland)

Full Text