Sensors (Basel, Switzerland) | 2021

Multilocation and Multiscale Learning Framework with Skip Connection for Fault Diagnosis of Bearing under Complex Working Conditions

 
 
 
 

Abstract


Considering various fault states under severe working conditions, the comprehensive feature extraction from the raw vibration signal is still a challenge for the diagnosis task of rolling bearing. To deal with strong coupling and high nonlinearity of the vibration signal, this article proposes a novel multilocation and multikernel scale learning framework based on deep convolution encoder (DCE) and bidirectional long short-term memory network (BiLSTM). The procedure of the proposed method using a cascade structure is developed in three stages. In the first stage, each parallel branch of the multifeature learning combines the skip connection and the DCE, and uses different size kernels. The multifeature learning network can automatically extract and fuse global and local features from different network depths and time scales of the raw vibration signal. In the second stage, the BiLSTM as the feature protection network is designed to employ the internal calculating data of the forward propagation and backward propagation at the same network propagation node. The feature protection network is used for further mining sensitive and complementary features. In the third stage of bearing diagnosis, the classifier identifies the fault types. Consequently, the proposed network scheme can perform well in generalization capability. The performance of the proposed method is verified on the two kinds of bearing datasets. The diagnostic results demonstrate that the proposed method can diagnose multiple fault types more accurately. Also, the method performs better in load and speed adaptation compared with other intelligent fault classification methods.

Volume 21
Pages None
DOI 10.3390/s21093226
Language English
Journal Sensors (Basel, Switzerland)

Full Text