Sustainability | 2019

The Push-Over Test and Numerical Analysis Study on the Mechanical Behavior of the GFRP Frame for Sustainable Prefabricated Houses

 
 
 

Abstract


The glass fiber reinforced plastics (GFRP) composite material is a low carbon emission, low life cycle cost, and sustainable material. In this paper, the structural behavior of the lateral force resistant performance of GFRP composite material frames with steel joints was presented, and the energy dissipation and failure modes of the GFRP frames were discussed. A total of six GFRP frames, including single-span and double-span frames with and without diagonal bracing members, were tested by pushover tests to obtain the lateral load-displacement relationships of the GFRP frames. The force-displacement relationship and the energy dissipation of the GFRP frames were examined in the pushover test. In addition, the numerical analysis was performed to obtain the lateral load-displacement relationships of the GFRP frames under pushover tests. When the numerical analysis results and the experimental results were compared, the absolute average errors of the maximum loads were less than 4%, and the lateral load-displacement relationships were close to each other. The numerical analysis results can predict the experimental force-displacement relationships of the GFRP frames.

Volume 11
Pages 6753
DOI 10.3390/su11236753
Language English
Journal Sustainability

Full Text