Symmetry | 2021

Atomic Structure Calculations of Helium with Correlated Exponential Functions

 
 
 

Abstract


The technique of quantum electrodynamics (QED) calculations of energy levels in the helium atom is reviewed. The calculations start with the solution of the Schrödinger equation and account for relativistic and QED effects by perturbation expansion in the fine structure constant α. The nonrelativistic wave function is represented as a linear combination of basis functions depending on all three interparticle radial distances, r1, r2 and r\xa0=\xa0|r→1−r→2|. The choice of the exponential basis functions of the form exp(−αr1−βr2−γr) allows us to construct an accurate and compact representation of the nonrelativistic wave function and to efficiently compute matrix elements of numerous singular operators representing relativistic and QED effects. Calculations of the leading QED effects of order α5m (where m is the electron mass) are complemented with the systematic treatment of higher-order α6m and α7m QED effects.

Volume 13
Pages 1246
DOI 10.3390/sym13071246
Language English
Journal Symmetry

Full Text