Vaccines | 2019

Induction of Broad and Polyfunctional HIV-1-Specific T Cell Responses by the Multiepitopic Protein TMEP-B Vectored by MVA Virus

 
 
 
 
 
 
 

Abstract


A human immunodeficiency virus (HIV)/acquired immune deficiency syndrome (AIDS) vaccine able to induce long-lasting immunity remains a major challenge. We previously designed a T cell multiepitopic immunogen including protective conserved epitopes from HIV-1 Gag, Pol and Nef proteins (TMEP-B), that induced potent HIV-1-specific CD8 T cells when vectored by DNA and combined with the vaccine candidate modified vaccinia virus Ankara (MVA)-B. Here, we described the vectorization of TMEP-B in MVA (MVA-TMEP) and evaluated the T cell immunogenicity profile elicited in mice when administered in homologous (MVA/MVA) or heterologous (DNA/MVA) prime/boost vector regimens or using homologous or heterologous inserts. The heterologous vector regimen was superior to the homologous protocol in inducing T cell responses. DNA-TMEP-primed animals boosted with MVA-TMEP or MVA-B exhibited the highest magnitudes of HIV-1-specific CD8, CD4 and T follicular helper (Tfh) cells, with MVA-TMEP significantly expanding Gag-specific CD8 T cell responses. In the homologous vector regimen, all groups exhibited similar HIV-1-specific CD8 and CD4 T cell responses, but both MVA-B/MVA-B and MVA-TMEP/MVA-TMEP combinations elicited higher Gag-Pol-Nef (GPN)-specific CD8 T cell responses compared to MVA-TMEP/MVA-B. Our results revealed an enhanced induction of HIV-1-specific T cell responses by TMEP-B when vectored in both DNA and MVA, and supported their use in combined prime/boost strategies for HIV-1 prevention and/or therapy.

Volume 7
Pages None
DOI 10.3390/vaccines7030057
Language English
Journal Vaccines

Full Text